Quantcast
Viewing all articles
Browse latest Browse all 54

Finding the Distribution Parameters

(This article was first published on Statistical Research » R, and kindly contributed to R-bloggers)

This is a brief description on one way to determine the distribution of given data. There are several ways to accomplish this in R especially if one is trying to determine if the data comes from a normal distribution. Rather than focusing on hypothesis testing and determining if a distribution is actually the said distribution this example shows one simple approach to determine the parameters of a distribution. I’ve found this useful when I’m given a dataset and I need to generate more of the same type of data for testing and simulation purposes.

Image may be NSFW.
Clik here to view.
Simulated Gamma Distribution

raw < - t( matrix(c(
1, 0.4789,
1, 0.1250,
2, 0.7048,
2, 0.2482,
2, 1.1744,
2, 0.2313,
2, 0.3978,
2, 0.1133,
2, 0.1008,
1, 0.7850,
2, 0.3099,
1, 2.1243,
2, 0.3615,
2, 0.2386,
1, 0.0883), nrow=2
) )
( fit.distr <- fitdistr(raw[,2], "gamma") )
qqplot(rgamma(nrow(raw),fit.distr$estimate[1], fit.distr$estimate[2]), (raw[,2]),
xlab="Observed Data", ylab="Random Gamma")
abline(0,1,col='red')

simulated <- rgamma(1000, fit.distr$estimate[1], fit.distr$estimate[2])
hist(simulated, main=paste("Histogram of Simulated Gamma using",round(fit.distr$estimate[1],3),"and",round(fit.distr$estimate[2],3)),
col=8, xlab="Random Gamma Distribution Value")

( fit.distr <- fitdistr(raw[,2], "normal") )
qqplot(rnorm(nrow(raw),fit.distr$estimate[1], fit.distr$estimate[2]), (raw[,2]))
abline(0,1,col='red')

( fit.distr <- fitdistr(raw[,2], "lognormal") )
qqplot(rlnorm(nrow(raw),fit.distr$estimate, fit.distr$sd), (raw[,2]))
abline(0,1,col='red')

( fit.distr <- fitdistr(raw[,2], "exponential") )
qqplot(rexp(nrow(raw),fit.distr$estimate), (raw[,2]))
abline(0,1,col='red')

Image may be NSFW.
Clik here to view.
Distribution of QQPlot

To leave a comment for the author, please follow the link and comment on his blog: Statistical Research » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series,ecdf, trading) and more...

Viewing all articles
Browse latest Browse all 54

Trending Articles