Quantcast
Channel: R-bloggers » Wesley
Viewing all articles
Browse latest Browse all 54

Binomial Confidence Intervals

$
0
0

(This article was first published on Statistical Research » R, and kindly contributed to R-bloggers)

This stems from a couple of binomial distribution projects I have been working on recently.  It’s widely known that there are many different flavors of confidence intervals for the binomial distribution.  The reason for this is that there is a coverage problem with these intervals (see Coverage Probability).  A 95% confidence interval isn’t always (actually rarely) 95%.  So I got curious what would happen if I generated random binomial data to find out what percent of the simulated data actually fell within the confidence interval.  For simplicity I used p=0.5.  I wrote up some quick code that generates binomial data for varying sample sizes and runs a comparison for each of the nine confidence interval methods using the binom.confint() function.


library(binom)
set.seed(0)
nsims <- 10000
maxn <- 500
n <- seq(2,maxn, by=2)

my.method <- c("exact", "ac", "asymptotic", "wilson", "prop.test", "bayes", "logit", "cloglog", "probit")
my.method <- my.method[sort.list(my.method)]
coverage <- matrix(NA, nrow=length(n), ncol=length(my.method))
ci.lower <- ci.upper <- matrix(NA, ncol=length(my.method), nrow=length(n))

for(i in 1:length(n)){
m <- n[i]/2
y <- rbinom(nsims, n[i], m/n[i])
ll <- binom.confint(m,n[i], conf.level=.95, method=my.method)$lower
ul <- binom.confint(m,n[i], conf.level=.95, method=my.method)$upper
ci.lower[i,] <- ll
ci.upper[i,] <- ul
for(j in 1:length(my.method)){
sig <- length(y[y/n[i]<=ul[j] &amp;amp;amp;amp;amp; y/n[i]>=ll[j]])
coverage[i,j] <- sig/nsims
}
}
plot(n,NULL, xlim=c(1,nrow(coverage)+1), ylim=c(.83,1),
col=1, pch=16, ylab="Percent", xlab="N",
main="95% Confidence Intervals for p=.5")

points(replicate(ncol(coverage),n),coverage, col=c(1:9),
pch=16, cex=.5)

abline(h=seq(.93,.97, by=.01), col="#EEEEEE")
abline(h=.95, col="#000000", lwd=2)
abline(v=seq(2,maxn, by=20), col="#EEEEEE")
legend("bottomright", my.method, col=c(1:9), pch=16, title="Interval Types", bg="#FFFFFF")
plot(n,NULL, xlim=c(1,100), ylim=c(0,1),
col=1, pch=16, ylab="Percent", xlab="N",
main="95% Confidence Interval for p=.5")

for(k in 1:ncol(coverage)){
lines(n, ci.lower[,k], col=k, lwd=1)
lines(n, ci.upper[,k], col=k, lwd=1)
}
legend("bottomright", my.method, col=c(1:9), ncol=2, lwd=1, title="Interval Types", bg="#FFFFFF")

Binomial Confidence Intervals

Binomial 95% Confidence Interval

To leave a comment for the author, please follow the link and comment on his blog: Statistical Research » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series,ecdf, trading) and more...

Viewing all articles
Browse latest Browse all 54

Trending Articles